
Page 1

 Mobile Agent Technology, Inc.

1440 Broadway, Suite 400, Oakland, CA 94612 • 510-818-9665 • info@emobileagent.com

Turning Applications into Web services via their User
Interfaces

MAT’s Ephphphatha Studio gives API (Application Program Interface) to
any applications with graphical user interface at their highest level of
abstraction; it is the fastest way of turning an application into a Web
service.

Much effort has been made to make intellectual property, captured within applications,
available to business partners and customers, and has given birth to a myriad of
technologies, including Web services. This effort, however, has conveniently assumed
that these applications already have ways for other applications to talk with them. This
assumption is untrue in many cases; one only needs to look at typical mainframe
applications. Many of these incommunicable applications, however, still interact with
human users via their user interfaces, and Ephphphatha takes advantage of this to make
them communicable; by pretending to be a human user on behalf of other applications,
Ephphphatha converts an incommunicable application communicable, all without ever
touching the application implementation.

Key technologies in Ephphphatha; windows messaging and shadow
components
Windows applications interact with their human users via keyboard strokes and mouse
movements/clicks; with a keyboard and a mouse, a human user types letters or letter
combinations in edit fields and clicks on buttons to give proper stimuli to the applications
to indicate what it is that he/she desires from the applications.1 The applications, then,
respond to the stimuli with a certain change on the screen, such as typed letters,
changed colors, different pages, or newly populated fields, etc. The very Win32
technology that makes this interaction possible is based on Windows messaging; a
stimulated Windows component sends out the information regarding itself and the
stimulus, and the other components that are interested in the stimulus on this particular
component receive and process the information. Ephphphatha is built on this
technology.

The Windows components basically do two things; accept user stimuli and relay the
applications’ responses to the stimuli back to the user on the screen. Although they do
much more than these two things inside themselves, when observed from outside, these
two things are the only behaviors they perform. In distributed computing, there is a
concept of an interface, which defines the behaviors of a component while hiding its
implementations. A component that works on behalf of another component by
shadowing it from outsiders is called a shadow component. When an outside
component gives a stimulus to the shadow component, the shadow component relays
the stimulus to its shadowed component it represents, and again relays the response
from the shadowed component back to the outside component. This technique is used

1 Note that edit fields and buttons are loosely defined in this context. Edit fields are used to indicate any
area on the screen where a user can type, and buttons are any click-able areas on the screen. Collectively,
they will be referred to Windows components, or components, throughout this document.

Page 2

 Mobile Agent Technology, Inc.

1440 Broadway, Suite 400, Oakland, CA 94612 • 510-818-9665 • info@emobileagent.com

in order to leave existing applications untouched while being connected to other
applications.

How Ephphphatha mimics Human Interactions
Ephphphatha enables developers to create a shadow component for any Windows
component. With shadow components, along with Windows messaging technology, a
developer can monitor any keyboard or mouse actions performed against an application.
If a user presses a key on a keyboard in an edit box field, the edit box will send out
information regarding this event, including its corresponding shadow component.
Ephphphatha can be programmed to take any actions with this information.
Furthermore, this shadow component can also initiate a stimulus to its shadowed
component. It can basically tell the component that a key has been pressed as if it is a
human user, and the shadowed component won’t know the difference.

An example can illustrate this further. Let’s take MS Outlook. In order to send an email
to someone, one would press the “New” button, and a new Windows for the email would
pop up. Then, while in the email Windows, one would type an email address in the “To”
field, type in the subject and contents in its appropriate fields, and hit the “Send” button.
This series of actions can be exactly duplicated with Ephphphatha Studio. A developer
can “scan” the graphic user interface (GUI) of Outlook and convert the GUI components
such as “New” and “Send” buttons as well as “Subject” and “Content” fields into
programmable objects or shadow components in the Studio. Then he/she can now tell
these shadow components about the events and associated information such as “New”
button has been clicked, “To” field needs to be typed with an email, “Content” field is to
be filled with whatever message, etc. in the codes. MS Outlook will behave exactly the
same way.

Ephphphatha architecture in Web services
Ephphatha consists of two parts; generating objects that represent the components and
invoking these objects. Generating objects is essentially drawing a map with which to
locate window components of interest. More specifically, it is 1) selecting the window
components of interest, 2) persisting information with which to locate the selected
components at a later time, 3) providing programmatic control over the default behaviors
of the components as encapsulated objects, 4) combining #2 and #3 to generate objects
that programmatically represent the user interface components. Ephphatha Studio is a
desktop application that automatically provides #2, #3, and #4 – all that a user needs to
do is select the window components he/she wishes to programmatically control.

Once the map has been generated, windows messages can be sent to the components
on the map. Ephphatha hides the complexity of windows messages in its API; for
example, button.click() internally generates a windows message that simulates a mouse
click and sends this message to the targeted button component.

A word on using native APIs vs. APIs made by Ephphphatha
The following list of issues should be examined closely when deciding whether to use
native API of an application or that provided by Ephphphatha.

Page 3

 Mobile Agent Technology, Inc.

1440 Broadway, Suite 400, Oakland, CA 94612 • 510-818-9665 • info@emobileagent.com

 Transaction volume – if the web service needs to scale to handle a large volume
of transaction, going through user interface may not be fast enough

 Development time – user interaction is the highest level of abstraction possible in
any application. What this means in development is that a significantly less number
of APIs need to be invoked to do the same thing. This not only means less coding,
but also implies easier debugging

 Complexity of business flows – with Ephphphatha, a business process is defined
by screen shots of applications, not in words. When dealing with complex business
processes, screen shots usually avoid misunderstanding in requirements documents.

